Abstract
We consider the estimation of the causal effect of a binary exposure on a continuous outcome. Confounding and missing data are both likely to occur in practice when observational data are used to estimate this causal effect. In dealing with each of these problems, model misspecification is likely to introduce bias. We present augmented inverse probability weighted (AIPW) estimators that account for both confounding and missing data, with the latter occurring in a single variable only. These estimators have an element of robustness to misspecification of the models used. Our estimators require two models to be specified to deal with confounding and two to deal with missing data. Only one of each of these models needs to be correctly specified. When either the outcome or the exposure of interest is missing, we derive explicit expressions for the AIPW estimator. When a confounder is missing, explicit derivation is complex, so we use a simple algorithm, which can be applied using standard statistical software, to obtain an approximation to the AIPW estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.