Abstract

Recently, Kulikov presented the idea of double quasi-consistency, which facilitates global error estimation and control, considerably. More precisely, a local error control implemented in such methods plays a part of global error control at the same time. However, Kulikov studied only Nordsieck formulas and proved that there exists no doubly quasi-consistent scheme among those methods. Here, we prove that the class of doubly quasi-consistent formulas is not empty and present the first example of such sort. This scheme belongs to the family of superconvergent explicit two-step peer methods constructed by Weiner, Schmitt, Podhaisky and Jebens. We present a sample of s -stage doubly quasi-consistent parallel explicit peer methods of order s − 1 when s = 3 . The notion of embedded formulas is utilized to evaluate efficiently the local error of the constructed doubly quasi-consistent peer method and, hence, its global error at the same time. Numerical examples of this paper confirm clearly that the usual local error control implemented in doubly quasi-consistent numerical integration techniques is capable of producing numerical solutions for user-supplied accuracy conditions in automatic mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.