Abstract

In a weakly doped quasi-two-dimensional antiferromagnet with a Fermi contour in the form of small pockets, the Coulomb repulsion gives rise to a doubly ordered superconducting state of coexisting condensates with a large pair momentum and a zero one. The pairing with the large momentum determines the superconducting transition temperature, below which the order with zero momentum coexists as an induced order until the temperature corresponding to the initiation of the phonon pairing mechanism is reached. The superconductivity-induced orbital current density wave eliminates the pairing-repulsion-caused zero points from the two-gap quasiparticle spectrum and leads to a deviation of the relative phase of the superconducting order parameter components from π.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.