Abstract
We study the resolvent and spectral measure of certain doubly infinite Jacobi matrices via asymptotic solutions of two-sided difference equations. By finding the minimal (or subdominant) solutions or calculating the continued fractions for the difference equations, we derive explicit formulas for the matrix entries of resolvent of doubly infinite Jacobi matrices corresponding to Lommel polynomials, associated ultraspherical polynomials, and Al-Salam–Ismail polynomials. The spectral measures are then obtained by inverting Stieltjes transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.