Abstract
AbstractDoubly charged ion mass spectra have been obtained for 42 chlorinated and brominated n‐alkane (methyl through octyl) hydrocarbons. A double focusing Hitachi RMU‐7L mass spectrometer, operated at 1.6kV accelerating voltage, has been used to measure the spectra. Molecular doubly charged ions have not been observed. Intense fragment ions have been produced from extensive H and halogen loss as well as CC bond rupture of the parent molecule. The most abundant ions in the doubly charged ion spectra observed in this investigation resulted from reactions of [Cl]2+˙, [Br]2+˙, [CCL2]2+, [C2H2Cl]2+˙, [C3H2]2+, [C3HCl]2+, [C3HBr]2+, [C4H3]2+˙, [C4H4]2+, [C4H6Br]2+˙, [C4H8Br]2+˙, [C5H2]2+, [C6H6]2+, [C6H8]2+ and [C7H8]2+. The prominent doubly charged fragment ions formed by electron impact of the smaller halogenated alkanes generally contained halogen, whereas ions of the type [CnHx]2+ were dominant in the spectra of higher molecular weight mono‐ and dihalogenated alkanes. Appearance energies of several ions have been measured. A geometry optimized quantum mechanical SCF treatment has been used to compute energies, charge densities and structures of doubly charged halogenated alkane ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.