Abstract

The mechanism of nonmagnetic Mott transitions in the Hubbard model on the square lattice is studied, using a variational Monte Carlo method. A simple doublon (D)–holon (H) binding mechanism a previous study proposed [J. Phys. Soc. Jpn. 75 (2006) 114706] has to be modified, because even a wave function with completely bound D–H pairs brings about a Mott transition at a finite correlation strength. By introducing two characteristic lengths, D–H pair binding length, ξDH, and minimum inter-doublon distance, ξDD, we can properly describe the physics of Mott transitions, and determine the critical point by ξDD∼ξDH. This concept seems universal, because it is valid not only for newly introduced wave functions with long-range D–H and D–D (H–H) correlation factors discussed here, but for a wide range of wave functions with D–H binding factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call