Abstract

AbstractMolecular nanoribbons are a class of atomically‐precise nanomaterials for a broad range of applications. An iterative approach that allows doubling the length of the longest pyrene‐pyrazinoquinoxaline molecular nanoribbons is described. The largest nanoribbon obtained through this approach—with a 60 linearly‐fused ring backbone (14.9 nm) and a 324‐atoms core (C276N48)—shows an extremely high molar absorptivity (values up to 1 198 074 M−1 cm−1) that also endows it with a high molar fluorescence brightness (8700 M−1 cm−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call