Abstract

Chronic erosion in Hawaii causes beach loss, damages homes and infrastructure, and endangers critical habitat. These problems will likely worsen with increased sea level rise (SLR). We forecast future coastal change by combining historical shoreline trends with projected accelerations in SLR (IPCC RCP8.5) using the Davidson-Arnott profile model. The resulting erosion hazard zones are overlain on aerial photos and other GIS layers to provide a tool for identifying assets exposed to future coastal erosion. We estimate rates and distances of shoreline change for ten study sites across the Hawaiian Islands. Excluding one beach (Kailua) historically dominated by accretion, approximately 92 and 96 % of the shorelines studied are projected to retreat by 2050 and 2100, respectively. Most projections (~80 %) range between 1–24 m of landward movement by 2050 (relative to 2005) and 4–60 m by 2100, except at Kailua which is projected to begin receding around 2050. Compared to projections based only on historical extrapolation, those that include accelerated SLR have an average 5.4 ± 0.4 m (±standard deviation of the average) of additional shoreline recession by 2050 and 18.7 ± 1.5 m of additional recession by 2100. Due to increasing SLR, the average shoreline recession by 2050 is nearly twice the historical extrapolation, and by 2100 it is nearly 2.5 times the historical extrapolation. Our approach accounts for accretion and long-term sediment processes (based on historical trends) in projecting future shoreline position. However, it does not incorporate potential future changes in nearshore hydrodynamics associated with accelerated SLR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call