Abstract

The behavior of complex interfacial systems is central to an ever-increasing number of applications. Vibrational sum frequency (VSF) spectroscopy is a powerful technique for obtaining surface specific structural information. The coherent nature of VSF that provides surface specificity, however, also creates difficulty in spectral interpretation especially as the system complexity increases. Computations of VSF spectra shed light on the molecular level source of the experimental VSF signal, allowing for the analysis of more complicated systems. Unfortunately, the majority of calculations of VSF spectra look at the response of the solvent or of rigid molecules and therefore often poorly reflect the experimental environment of most VSF spectroscopic measurements. In this work, flexible solute molecules at interfaces are investigated by doubling down, obtaining and comparing experimental and theoretical spectra, to determine a more accurate computational treatment. The surface behavior and VSF spectra of glutaric acid and adipic acid at the air/water interface are determined experimentally and calculated using a combination of classical molecular dynamics and density functional theory. Both diacids are found to be surface active. At high concentrations, glutaric acid forms dimers altering its VSF response and acidic properties. Calculated VSF spectra are found to be sensitive to vibrational mode frequencies, with ordering and spacing affecting relative intensities, as well as molecular conformation. A proper description requires consideration of multiple conformers and anharmonic effects on the molecular vibrational energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call