Abstract

In this article, we define a doubling procedure for the bialgebra of specified Feynman graphs introduced in a previous paper \cite {DMB}. This is the vector space generated by the pairs $(\bar \Gamma, \bar \gamma)$ where $\bar \Gamma$ is a locally $1PI$ specified graph of a perturbation theory $\Cal T$ with $\bar \gamma \subset \bar \Gamma$ locally $1PI$ and where $\bar \Gamma / \bar \gamma $ is a specified graph of $\Cal T$. We also define a convolution product on the characters of this new bialgebra with values in an endomorphism algebra, equipped with a commutative product compatible with the composition. We then express in this framework the renormalization as formulated by A. Smirnov \cite [§8.5, 8.6] {Sm}, adapting the approach of A. Connes and D. Kreimer for two renormalization schemes: the minimal renormalization scheme and the Taylor expansion scheme. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure, by following the approach by P. Etingof \cite{PE} (see also \cite{RM}).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.