Abstract

Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function yet to be exploited as an antiviral target. One of the possible challenges may be that targeting HIV RNase H is confronted with a steep substrate barrier. We have previously reported a 3-hydroxypyrimidine-2,4-dione (HPD) subtype that potently and selectively inhibited RNase H without inhibiting HIV in cell culture. We report herein a critical redesign of the HPD chemotype featuring an additional wing at the C5 position that led to drastically improved RNase H inhibition and significant antiviral activity. Structure-activity relationship (SAR) concerning primarily the length and flexibility of the two wings revealed important structural features that dictate the potency and selectivity of RNase H inhibition as well as the observed antiviral activity. Our current medicinal chemistry data also revealed that the RNase H biochemical inhibition largely correlated the antiviral activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.