Abstract

Abstract The characteristics of the spectral evolution of the prompt emission of gamma-ray bursts (GRBs), which are closely related to the radiation mechanism (synchrotron or photosphere), are still an unsolved subject. Here, by performing the detailed time-resolved spectral fitting of GRB 131231A, which has a very bright and well-defined single pulse, some interesting spectral evolution features have been found. (i) Both the low-energy spectral index α and the peak energy E p exhibit the “flux-tracking” pattern (“double-tracking” characteristics). (ii) The parameter relations, i.e., F (the energy flux)-α, F–E p, and E p–α, along with the analogous Yonetoku E p–L γ,iso relation for the different time-resolved spectra, show strong monotonous (positive) correlations, both in the rising and the decaying phases. (iii) The values of α do not exceed the synchrotron limit (α = −2/3) in all slices across the pulse, favoring the synchrotron origin. We argue that the one-zone synchrotron emission model with the emitter streaming away at a large distance from the central engine can explain all of these special spectral evolution characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.