Abstract

We report on the geometric and electronic structures of a series of V2+/3+ tren-bridged iminopyridine complexes [tren = tris(2-aminoethyl)amine] that enable the observation of an unexpected doublet ground state for a nominally 3d3 species. Tren undergoes condensation reactions with picolinaldehyde or methyl-6-formylnictonate to form the respective tripodal ligand sets of (py)3tren and (5-CO2Mepy)3tren. The (py)3tren ligand is coordinated to V2+ and V3+ metal centers to form complex salts [1-H](OTf)2 and [1-H](OTf)3, respectively (OTf- = CF3SO3-). For [1-H]2+, strong metal-ligand π-covalency with respect to the V2+ (3d3) and iminopyridine ligands weakens its interelectronic repulsion. For [1-H]3+, the bridgehead nitrogen of the tren scaffold forms a seventh coordinate covalent bond with a V3+ (3d2) metal center. The coordination of (5-CO2Mepy)3tren to a V2+ metal center results in the redox noninnocent and heptacoordinate compound [1-CO2Me](OTf)2 with a doublet (S = 1/2) ground state that we support with magnetic susceptibility and spectroscopy measurements. The complexes are uniformly characterized experimentally with single-crystal X-ray diffraction, electronic absorbance, and electrochemistry, and electronic structures are corroborated by computational techniques. We present a new computational procedure that we term the spin-optimized approximate pair (SOAP) method that enables the visualization and quantification of electron-electron interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call