Abstract

A (2′–5′)A n synthetase activity was isolated from human placental extracts by affinity chromatography on poly(rI)·poly(rC)-agarose. The oligonucleotide (2′–5′)A n was identified by (1) chromatography on PEI-cellulose and DEAE-cellulose, (2) inhibition of polypeptide synthesis in lysed rabbit reticulocytes (3) competition of the binding of pppA(pA)3,3′-[ 32P]pCp to rabbit reticulocyte lysates, and (4) alkaline phosphatase digestion. The synthetase activity in most placental preparations is activated by natural or synthetic dsRNA. However, in a few placental synthetase preparations, dsRNA is only marginally stimulatory and only becomes effective by prior treatment of the enzyme preparations with the calcium-dependent micrococal nuclease. This suggeststhat there is an endogenous placental dsRNA contaminant in the enzyme preparations. In some synthetase preparations, a second dsRNA-stimulated product, tentatively identified as the nucleotide 5′-IMP, is also observed. Because the specific AMP deaminase inhibitor coformycin (10 μM) blocks the formation of IMP from ATP and causes a quantitative accumulation of AMP, and because the formation of IMp becomes independent of dsRNA when ADP or AMP is used in plase of ATP, the presence of a dsRNA-stimulated ATP phosphohydrolase (ATPase) activity in human placenta is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.