Abstract

We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.