Abstract
Perovskites with ABO3 structure are the potential catalysts to replace the noble metals used in environmental catalysis, e.g. CO oxidation, volatile organic compounds (VOCs) and soot combustion. Herein, a novel double-shelled porous perovskite-type LaNiO3 nanocage (assigned as LaNiO3-Cage, with dual cage or cage in cage structure) was successfully synthesized via a facile hydrothermal method for the first time. LaNiO3-Cage displayed superior activity and stability for CO oxidation. The morphology and structure properties of the samples were confirmed by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), High-angle annular dark-field scanning transmission electron microscope (HAADF-STEM), Elemental mapping, Powder X-ray Diffraction (PXRD) and N2 adsorption/desorption techniques. The inherent morphology-activity relationship was investigated through Temperature-Programmed Reduction with Hydrogen (H2-TPR), Temperature-Programmed Desorption with Oxygen and Carbon monoxide (O2-TPD and CO-TPD), and X-ray Photoelectron Spectroscopy (XPS) methods. LaNiO3-Cage showed superior catalytic performance among all the comparison samples (with lowest Ea, highest reaction activity, rate and TOF value) which should be ascribed to its special double-shelled porous nanocage structure (main factors) as well as larger surface areas and more active surface oxygen species. It should be noted that the outstanding catalytic performance of LaNiO3-Cage is well correlated with its special morphology structure. The porous double-shelled LaNiO3 nanocage prepared in this work can be used to design other type of catalysts with the similar morphology as novel nanoreactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.