Abstract

A double-image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and high dimension chaotic system in gyrator transform domain, in which three chaotic random sequences are generated by using Chen system. First, an enlarged image constituted with two plaintext images is scrambled by using the first two sequences, and then separated into two new interim images. Second, one interim image is converted to the private phase key with the help of the third sequence, which is modulated by a random phase key generated based on logistic map. Based on this private phase key, another interim image is converted to the ciphertext with white noise distribution in the Yang-Gu amplitude-phase retrieval process. In the process of encryption and decryption, the images both in spatial domain and gyrator domain are nonlinear and disorder by using high dimension chaotic system. Moreover, the ciphertext image is only a real-valued function which is more convenient for storing and transmitting, and the security of the proposed encryption scheme is enhanced greatly because of high sensitivity of initial values of Chen system and rotation angle of gyrator transform. Extensive cryptanalysis and simulation results have demonstrated the security, validity and feasibility of the propose encryption scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.