Abstract

Scalability and the highly dynamic topology of Vehicular Ad Hoc Networks (VANETs) are the biggest challenges that slow the roll-out of such a promising technology. Adopting an effective VANET clustering algorithm can tackle these issues in addition to benefiting routing, security and media access management. In this paper, we propose a general-purpose resilient double-head clustering (DHC) algorithm for VANET. Our proposed approach is a mobility-based clustering algorithm that exploits the most relevant mobility metrics such as vehicle speed, position, and direction, in addition to other metrics related to the communication link quality such as the link expiration time (LET) and the signal-to-noise ratio (SNR). The proposed algorithm has enhanced performance and stability features, especially during the cluster maintenance phase, through a set of procedures developed to achieve these objectives. An extensive evaluation methodology is followed to validate DHC and compare its performance with another algorithm using different existing and newly proposed evaluation metrics. These metrics are analyzed under various mobility scenarios, vehicle densities, and radio channel models such as log-normal shadowing and two-ray ground loss with and without Nakagami-m fading model. The proposed algorithm DHC has proven its ability to be more stable and efficient under different simulation scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.