Abstract
Following the approach in the book "Commutative Algebra", by D. Eisenbud, where the author describes the generic initial ideal by means of a suitable total order on the terms of an exterior power, we introduce first the generic initial extensor of a subset of a Grassmannian and then the double-generic initial ideal of a so-called GL-stable subset of a Hilbert scheme. We discuss the features of these new notions and introduce also a partial order which gives another useful description of them. The double-generic initial ideals turn out to be the appropriate points to understand some geometric properties of a Hilbert scheme: they provide a necessary condition for a Borel ideal to correspond to a point of a given irreducible component, lower bounds for the number of irreducible components in a Hilbert scheme and the maximal Hilbert function in every irreducible component. Moreover, we prove that every isolated component having a smooth double-generic initial ideal is rational. As a byproduct, we prove that the Cohen-Macaulay locus of the Hilbert scheme parameterizing subschemes of codimension 2 is the union of open subsets isomorphic to affine spaces. This improves results by J. Fogarty (1968) and R. Treger (1989).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.