Abstract

Matrix learning, multiple-view learning, Universum learning, and local learning are four hot spots of present research. Matrix learning aims to design feasible machines to process matrix patterns directly. Multiple-view learning takes pattern information from multiple aspects, i.e., multiple-view information into account. Universum learning can reflect priori knowledge about application domain and improve classification performances. A good local learning approach is important to the finding of local structures and pattern information. Our previous proposed learning machine, double-fold localized multiple matrix learning machine is a one with multiple-view information, local structures, and matrix learning. But this machine does not take Universum learning into account. Thus, this paper proposes a double-fold localized multiple matrix learning machine with Universum (Uni-DLMMLM) so as to improve the performance of a learning machine. Experimental results have validated that Uni-DLMMLM (1) makes full use of the domain knowledge of whole data distribution as well as inherits the advantages of matrix learning; (2) combines Universum learning with matrix learning so as to capture more global knowledge; (3) has a good ability to process different kinds of data sets; (4) has a superior classification performance and leads to a low empirical generation risk bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.