Abstract

Abstract The exponentially growing solutions of the linear stability analysis of double-diffusive interleaving are allowed to grow to finite amplitude. At this stage the double-diffusive fluxes across the intrusion boundaries must be parameterized differently to those in the growing solution because every second finger interface becomes a diffusive interface in the steady state solution. Using the wavenumbers that are set by the initial, growing intrusions from the linear stability problem, together with the changed parameterization of the double-diffusive fluxes, it is shown that a steady state is reached. The ratio of the gradients of potential temperature and salinity along any particular intrusion is the same as in the linear stability analysis. When expressed in terms of density changes, this ratio is close to 0.9 rather than the commonly assumed value of 0.5 (being the buoyancy-flux ratio of a single salt finger interface). After solving for the velocity field, the isopycnal and diapycnal fluxes of ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.