Abstract
Doublecortin-like kinase 2 (DCLK2) is a microtubule-associated protein kinase that participates in neural development and maturation; however, whether it is involved in tumour progression remains unclear. DCLK2 overexpression and knockdown clones were established by lentivirus transfection. Western blot, PCR assays and bioinformatics analyses were conducted to observe the expression of DCLK2. CCK8, colony formation, scratch migration and Transwell assays were used to detect cell proliferation, migration and invasion, respectively. Tumour metastasis was evaluated in vivo using a tail vein metastasis model. Bioinformatics analyses were performed to analyse the expression correlation between DCLK2 and TCF4, or EMT markers in breast cancer. Our data indicate that DCLK2 is highly expressed in breast cancer cells and is associated with poor prognosis. Silencing DCLK2 does not affect the proliferation rate of tumour cells, but significantly suppresses migration and invasion as well as lung metastasis processes. Overexpression of DCLK2 can enhance the migratory and invasive abilities of normal breast epithelial cells. Moreover, TCF4/β-catenin inhibitor LF3 downregulates the expression of DCLK2 and inhibits the migration and invasion of breast cancer cells. Furthermore, we found that the downregulation of DCLK2 blocks the epithelial-mesenchymal transition (EMT) process. Our study indicates that DCLK2 plays an important role in EMT, cell invasion and metastasis, suggesting that DCLK2 is a potential target for the treatment of metastatic breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.