Abstract

Simple SummaryDoublecortin (DCX) is an essential protein in the development of the central nervous system and in lamination of the mammalian cortex. It is known that the expression of DCX is restricted to newborn neurons. The visual system of teleost fish has been postulated as an ideal model since it continuously grows throughout the animal’s life. Here, we report a comparative expression analysis of DCX between two teleost fish species as well as a bioinformatic analysis with other animal groups. Our results demonstrate that DCX is very useful for identifying new neurons in the visual systems of Astatotilapia burtoni, but is absent in Danio rerio.Doublecortin (DCX) is a microtubule associated protein, essential for correct central nervous system development and lamination in the mammalian cortex. It has been demonstrated to be expressed in developing—but not in mature—neurons. The teleost visual system is an ideal model to study mechanisms of adult neurogenesis due to its continuous life-long growth. Here, we report immunohistochemical, in silico, and western blot analysis to detect the DCX protein in the visual system of teleost fish. We clearly determined the expression of DCX in newly generated cells in the retina of the cichlid fish Astatotilapia burtoni, but not in the cyprinid fish Danio rerio. Here, we show that DCX is not associated with migrating cells but could be related to axonal growth. This work brings to light the high conservation of DCX sequences between different evolutionary groups, which make it an ideal marker for maturing neurons in various species. The results from different techniques corroborate the absence of DCX expression in zebrafish. In A. burtoni, DCX is very useful for identifying new neurons in the transition zone of the retina. In addition, this marker can be applied to follow axons from maturing neurons through the neural fiber layer, optic nerve head, and optic nerve.

Highlights

  • Doublecortin (DCX; known as doublin or lissencephalin-X) is a microtubuleassociated protein which is typically expressed in the early neuronal differentiation stage, both in precursors and immature neurons [1,2]

  • DCX Is Present in A. burtoni Retina but Not D. rerio

  • Antibody stains applied to histological sections enabled the detection of DCX expression in the A. burtoni retina (Figure 1A,B)

Read more

Summary

Introduction

Doublecortin (DCX; known as doublin or lissencephalin-X) is a microtubuleassociated protein which is typically expressed in the early neuronal differentiation stage, both in precursors and immature neurons [1,2]. Brain formation depends on microtubules (MTs) and accompanying microtubule associated proteins (MAPs) to regulate specific migration of different neural cell types [7]. Brain development includes nuclear displacement and process formation that require the action of MTs and specific MAPs [8]. MTs are essential in the formation of growth cones [9]. The de-stabilization of MTs leads to the collapse of the migrating cell body and cessation of nuclear translocation [10]. Faulty of DCX expression causes critical brain defects, which implies that other MTs stabilizing proteins cannot compensate for DCX function in the central nervous system (CNS) [7,11]. In newly formed neurons, DCX are involved in the growth of neuronal processes [12,13]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call