Abstract
An aromatic boron-containing organic compound, C2B2H2, with an unusual CC bond was experimentally synthesized in 2017. Here we investigate the structure and bonding nature of C2B2H2 and its derivatives C2B2R2 using DFT and VB theory. Although the CC bond in C2B2R2 consists of a π bond and a charge-shift (CS) bond, C2B2F2 has the lowest LUMO energy and its LUMO is similar to that of ethylene, suggesting that C2B2F2 can be an ideal dienophile for the Diels-Alder reaction. Subsequently, the mechanism and stereoselectivity of the Diels-Alder reaction of C2B2F2 with 5-substituted cyclopentadienes are studied. Computations demonstrate that these Diels-Alder reactions are feasible thermodynamically and kinetically. The stereoselectivity and distortion angles of C2B2R2 exhibit linear correlations with the electronegativity difference between the two substituents bonded to the C(sp3) of cyclopentadiene, suggesting that the stereoselectivity of related Diels-Alder reaction products can be modulated by the substitution of cyclopentadiene. Considering the current interest in boron neutron capture therapy (BNCT), we design six BNCT drugs through the Diels-Alder reaction of C2B2F2 with dienes containing peptide fragments. Thus, we demonstrate a new method for designing three-in-one BNCT drugs via the facile Diels-Alder reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.