Abstract

The present work highlights the preparation of double Z-scheme ZnCo2O4/MnO2/FeS2 nanocomposite (NCs) and investigated its photocatalytic activity against methyl orange (MO) dye degradation under visible light. An array of techniques was carried out to characterize the nanoparticles (NPs) in order to evaluate their morphological, structural, optical, and photocatalytic properties using FE-SEM, TEM, XRD, N2 adsorption and desorption studies, PL, UV-visible spectrophotometer, XPS, Raman, and UV-vis DRS analysis. The degradation efficiency of NCs was tested along with different parameter studies such as different pH, NCs concentration, dye concentration, reusability and structural stability. The NCs exhibited complete photodegradation of MO dye under visible light within 80min at pH 4. The structural and compositional stability of the prepared NCs over 6 consecutive cycles was tested via XRD and XPS analysis. The results of active species trapping experiments showed that O2-• and OH• are responsible for the degradation of MO dye. The TOC analysis showed 95% of mineralization by the prepared NCs. The MO dye degradation pathway was determined using GC-MS/MS analysis and drafted all the intermediates involved. End product toxicity via seed germination and intermediate toxicity study using ECOSAR software results in less toxicity of end product compared to parent compound. Finally, the genotoxicity of the prepared NCs was evaluated using Allium cepa and showed its no causes of cytotoxicity & genotoxicity by the prepared NCs. ZnCo2O4/MnO2/FeS2 NCs exhibited its high photocatalytic activity and the toxicity studies confirms that there is no cause of any environmental impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call