Abstract

We examine regeneration dynamics across landscapes under extreme climate conditions and a human-altered fire regime in ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) forests of the American Southwest. Our research asks how well these forests recover when unprecedented conditions of a high-severity fire regime combine with historical drought conditions. Tree recruitment is documented at five sites in New Mexico after high-severity fires that burned forests in the drought that prevailed from ∼1945 to 1958. We develop a water-balance type model to evaluate how altered microclimate conditions in the years after a fire and during a drought may inhibit ponderosa pine regeneration in comparison with drought conditions alone. We empirically identify two pathways of forest recovery following high-severity fires during drought: recovery to nonforest types, either dense shrubfields or shrubs in grasslands (four sites) or recovery to hyperdense forest (one site). Model simulations predict fewer favorable opportunities for germination, fewer periods favorable for seedling establishment, shortening of favorable establishment periods, and more adverse conditions because of later spring and earlier fall hard freezes. Our research suggests that a specific climate window critical to the capacity of southwestern ponderosa pine trees to regenerate is narrowed by a synchronous occurrence of high-severity fire and drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call