Abstract

Metal-organic polyhedral frameworks are attractive in gas storage and separation due to large voids with windows that can serve as traps for guest molecules. Introducing multivariant/multicomponent functionalities in them are ways of improving performances for certain targets. The high compatibility of organic linkers can generate multivariant MOFs, but by far, the diversity of secondary building units (SBUs) in a single metal-organic framework is still limited (no more than two in most cases). Here we report a new double-walled Zn36@Zn104 metal-organic polyhedral framework (HHU-8) with five types of topologically distinct SBUs and its isoreticular evolution to the Zn36@Zn136 counterpart (HHU-8s). Both MOFs are the first to be constructed with such high numbers of topologically distinct SBUs as well as topologically distinct nodes, and their formation and evolution provide new insight into SBU's controllability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.