Abstract

The co-occurrence of fine particulate matter (PM2.5) and ozone (O3) pollution during the warm season has become a growing public health concern. The interaction between PM2.5 and O3 and its contribution to disease burden associated with co-pollution has not been thoroughly examined. We collected data on hospital admissions for respiratory diseases from a city-wide hospital discharge database in Beijing between 2013 and 2019. City-wide 24-h mean PM2.5 and daily maximum 8-h mean O3 were averaged from 35 monitoring stations across Beijing. Conditional Poisson regression was employed to estimate the interaction between warm-season PM2.5 and O3 on respiratory admissions. A model incorporating a tensor product term was used to fit the non-linear interaction and estimate the number of respiratory admissions attributable to PM2.5 and O3 pollution. From January 18, 2013 to December 31, 2019, 1,191,308 respiratory admissions were recorded. We observed multiplicative interactions between warm-season PM2.5 and O3 on upper respiratory infections (P = 0.004), pneumonia (P = 0.002), chronic obstructive pulmonary disease (P = 0.041), and total respiratory disease (P < 0.001). PM2.5-O3 co-pollution during warm season exhibited a super-additive effect on respiratory admissions, with a relative excess risk due to interaction of 1.65% (95%CI: 0.46%–2.84%). There was a non-linear pattern of the synergistic effect between PM2.5 and O3 on respiratory admissions. Based on the World Health Organization global air quality guidelines, 12,421 respiratory admissions would be reduced if both daily PM2.5 and O3 concentrations had not exceeded the target (PM2.5 15 μg/m3, O3 100 μg/m3). The number of respiratory admissions attributable to either PM2.5 or O3 pollution decreased by 48.7% from 2013 to 2019. Prioritizing O3 control during the warm season is a cost-effective strategy for Beijing. These findings underscore the significance of concurrently addressing both PM2.5 pollution and O3 pollution during the warm season to alleviate the burden of respiratory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call