Abstract
In this paper the following convergence properties are established for the rectangular partial sums of the double trigonometric series, whose coefficients form a null sequence of bounded variation of order $ (p,0) $, $ (0,p) $ and $ (p,p) $, for some $ p\ge 1$: (a) pointwise convergence; (b) uniform convergence; (c) $ L^r $-integrability and $ L^r $-metric convergence for $ 0
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.