Abstract

Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.