Abstract

Acoustic echo in full-duplex telecommunication systems is a common problem that may cause desired-speech quality degradation during double-talk periods. This problem is especially challenging in low signal-to-echo ratio (SER) scenarios, such as hands-free conversations over mobile phones when the loudspeaker volume is high. This paper proposes a two-stage deep-learning approach to residual echo suppression focused on the low SER scenario. The first stage consists of a speech spectrogram masking model integrated with a double-talk detector (DTD). The second stage consists of a spectrogram refinement model optimized for speech quality by minimizing a perceptual evaluation of speech quality (PESQ) related loss function. The proposed integration of DTD with the masking model outperforms several other configurations based on previous studies. We conduct an ablation study that shows the contribution of each part of the proposed system. We evaluate the proposed system in several SERs and demonstrate its efficiency in the challenging setting of a very low SER. Finally, the proposed approach outperforms competing methods in several residual echo suppression metrics. We conclude that the proposed system is well-suited for the task of low SER residual echo suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.