Abstract

A new optoelectronic mesomaterial is proposed in which a network of quantum dots is covalently connected via organic molecules. Optically generated excitons are rapidly dissociated with electrons subsequently hopping from dot to dot while holes transit via the connecting moieties. The molecules serve as efficient mediators for electron superexchange between the dots, while the dots themselves play the complementary role for hole transport between molecules. The network thus exhibits a double superexchange. In addition to enhancing carrier hopping rates, double superexchange plays a central role in mediating efficient polaron dissociation. Photoluminescence, dissociation, and transport dynamics are quantified from first-principles for a model system composed of small silicon quantum dots connected by organic moieties. The results demonstrate that double superexchange can be practically employed to significantly improve charge generation and transport. These are currently viewed as the critical obstacles to dramatic enhancements in the energy conversion efficiency of photovoltaic cells based on quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.