Abstract
Mechanical metamaterials have emerged as a promising solution for shielding against environmental vibrations and shocks. However, most existing metamaterials provide a single functionality in mechanical protection, limiting their adaptability to complex working scenarios. To address this limitation, we propose a double-strip metamaterial (DSM) that achieves both vibration isolation and shock attenuation. The DSM employs quasi-zero stiffness for vibration isolation and snap-through buckling for shock energy dissipation. Buckling mode analysis reveals that the dual-functionality of the DSM arises from its diverse buckling behaviors, with theoretical models further quantifying its mechanical response. The DSM can effectively isolate the vibration above 13 Hz and reduce instantaneous shock by up to 58 %, as demonstrated by dynamic tests. This design strategy opens new avenues for comprehensive protection in engineering applications, spanning aerospace, automotive, and logistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.