Abstract

Lung contusion is a major risk factor for the development of acute respiratory distress syndrome. We set to determine the role of toll-like receptor 3 and the binding of double-stranded RNA in the pathogenesis of sterile injury following lung contusion. Toll-like receptor 3 expression was analyzed in postmortem lung samples from patients with lung contusion. Unilateral lung contusion was induced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice. Subsequently, lung injury and inflammation were evaluated. Apoptotic indices, phagocytic activity, and phenotypic characterization of the macrophages were determined. Double-stranded RNA in bronchoalveolar lavage and serum samples following lung contusion was measured. A toll-like receptor 3/double-stranded RNA ligand inhibitor was injected into wild-type mice prior to lung contusion. Toll-like receptor 3 expression was higher in patients and wild-type mice with lung contusion. The degree of lung injury, inflammation, and macrophage apoptosis was reduced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice with toll-like receptor 3 antibody neutralization. Alveolar macrophages from toll-like receptor 3 (-/-) mice had a lower early apoptotic index, a predominant M2 phenotype and increased surface translocation of toll-like receptor 3 from the endosome to the surface. When compared with viral activation pathways, lung injury in lung contusion demonstrated increased p38 mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 phosphorylation with inflammasome activation without a corresponding increase in nuclear factor-κB or type-1 interferon production. Additionally, pretreatment with toll-like receptor 3/double-stranded RNA ligand inhibitor led to a reduction in injury, inflammation, and macrophage apoptosis. We conclude that the interaction of double-stranded RNA from injured cells with toll-like receptor 3 drives the acute inflammatory response following lung contusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.