Abstract

Double-stranded polymeric ladderphanes are obtained by ring-opening metathesis polymerization (ROMP) of bisnorbornene derivatives by the first generation of Grubbs catalyst (G-I). A range of two- and three-dimensional organic and organometallic linkers are used to connect two norbornene units. The structures of these double-stranded polymers are proved by spectroscopic means and scanning tunneling microscopic (STM) images. Hydrolytic cleavages of these ladderphanes give the corresponding single-stranded polymers with the same degree of polymerization and polydispersity as those of the double-stranded counterparts. Helical polymeric ladderphanes are also synthesized similarly when chiral linkers are used. Strong intereactions between adjacent linkers have been revealed by their physical properties in these polymers. Chemical modification of ladderphanes is achieved by bis-dihydroxylation, diimide reduction of double bonds, and electrochemical oxidation of linkers. Unsymmetrical ladderphanes with well-defined lengths and narrow dispersity are also obtained by replication and by sequential polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.