Abstract

High Performance Fortran (HPF) does not allow efficient expression of mixed task/data-parallel computations or the coupling of separately compiled data-parallel modules. In this paper, we show how a coordination library implementing the Message Passing Interface (MPI) can be used to represent these common parallel program structures. This library allows data-parallel tasks to exchange distributed data structures using calls to simple communication functions. We present microbenchmark results that characterize the performance of this library and that quantify the impact of optimizations that allow reuse of communication schedules in common situations. In addition, results from two-dimensional FFT, convolution, and multiblock programs demonstrate that the HPF/MPI library can provide performance superior to that of pure HPF. We conclude that this synergistic combination of two parallel programming standards represents a useful approach to task parallelism in a data-parallel framework, increasing the range of problems addressable in HPF without requiring complex compiler technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.