Abstract

Plant cells use different structural mechanisms, either constitutive or inducible, to defend themselves from fungal infection. Encapsulation is an efficient inducible mechanism to isolate the fungal haustoria from the plant cell protoplast. Conversely, pectin, one of the polymeric components of the cell wall, is a target of several pectolytic enzymes in necrotrophic interactions. Here, a protocol to detect pectin and fungal hyphae through optical microscopy is presented. The pectin-rich encapsulation in the cells of coffee leaves infected by the rust fungus Hemileia vastatrix and the mesophyll cell wall modification induced by Cercospora coffeicola are investigated. Lesioned leaf samples were fixed with the Karnovsky solution, dehydrated, and embedded in glycol methacrylate for 2-4 days. All steps were followed by vacuum-pumping to remove air in the intercellular spaces and improve the embedding process. The embedded blocks were sectioned into 5-7 µm thick sections, which were deposited on a glass slide covered with water and subsequently heated at 40 °C for 30 min. Next, the slides were double-stained with 5% cotton blue in lactophenol to detect the fungus and 0.05% ruthenium red in water to detect pectin (acidic groups of polyuronic acids of pectin). Fungal haustoria of Hemileia vastatrix were found to be encapsulated by pectin. In coffee cercosporiosis, mesophyll cells exhibited dissolution of cell walls, and intercellular hyphae and conidiophores were observed. The method presented here is effective to detect a pectin-associated response in the plant-fungi interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.