Abstract

An aberration-free imaging technique was used to design a double-spherically bent crystal spectrometer with high energy and spatial resolutions to ensure that the individual spectral lines are represented as perfectly straight lines on the detector. After obtaining the matched parameters of the two crystals via geometry-based optimization, an alignment method was employed to allow the spacing between the crystals and the detector to be coupled with the source. The working principle of this spectrum-measuring scheme was evaluated using a Cu X-ray tube. High-quality spectra with energy resolutions (E/ΔE) of approximately 3577 were obtained for a relatively large source size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.