Abstract

We study the interaction between graphene and a single-molecule-magnet, [Fe 4(L)2(dpm)6]. Focusing on the closest Iron ion in a hollow position with respect to the graphene sheet, we derive a channel selective tunneling Hamiltonian, that couples different d orbitals of the Iron atom to precise independent combinations of sublattice and valley degrees of freedom of the electrons in graphene. When looking at the spin-spin interaction between the molecule and the graphene electrons, close to the Dirac point the channel selectivity results in a channel decoupling of the Kondo interaction, with two almost independent Kondo systems weakly interacting among themselves. The formation of magnetic moments and the development of a full Kondo effect depends on the charge state of the graphene layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.