Abstract

Multilevel growth curve models for repeated measures data have become increasingly popular and stand as a flexible tool for investigating longitudinal change in students’ outcome variables. In addition, these models allow the estimation of school effects on students’ outcomes though making strong assumptions about the serial independence of level-1 residuals. This paper introduces a method which takes into account the serial correlation of level-1 residuals and also introduces such serial correlation at level-2 in a complex double serial correlation (DSC) multilevel growth curve model. The results of this study from both real and simulated data show a great improvement in school effects estimates compared to those that have previously been found using multilevel growth curve models without correcting for DSC for both the students’ status and growth criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.