Abstract

The temperature dependences of the peak position and width of the photoluminescence band in Al0.1In0.01Ga0.89N layers were explained by Monte Carlo simulation of exciton localization and hopping. The introduction of a doubled-scaled potential profile due to inhomogeneous distribution of indium allowed obtaining a good quantitative fit of the experimental data. Hopping of excitons was assumed to occur through localized states distributed on a 16 meV energy scale within the In-rich clusters with the average energy in these clusters dispersed on a larger (42 meV) scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call