Abstract
Low-frequency information is important in reducing the nonuniqueness of absolute impedance inversion and for quantitative seismic interpretation. In traditional model-driven impedance inversion methods, the low-frequency impedance background is from an initial model and is almost unchanged during the inversion process. Moreover, the inversion results are limited by the quality of the modeled seismic data and the extracted wavelet. To alleviate these issues, we have investigated a double-scale supervised impedance inversion method based on the gated recurrent encoder-decoder network (GREDN). We first train the decoder network of GREDN called the forward operator, which can map impedance to seismic data. We then implement the well-trained decoder as a constraint to train the encoder network of GREDN called the inverse operator. Besides matching the output of the encoder with broadband pseudowell impedance labels, data generated by inputting the encoder output into the known decoder match the observed narrowband seismic data. The broadband impedance information and the already-trained decoder largely limit the solution space of the encoder. Finally, after training, only the derived optimal encoder is applied to unseen seismic traces to yield broadband impedance volumes. Our approach is fully data driven and does not involve the initial model, seismic wavelet, and model-driven operator. Tests on the Marmousi model illustrate that our double-scale supervised impedance inversion method can effectively recover low-frequency components of the impedance model, and we determine that low frequencies of the predicted impedance originate from well logs. Furthermore, we apply the strategy of combining the double-scale supervised impedance inversion method with a model-driven impedance inversion method to process field seismic data. Tests on a field data set indicate that the predicted impedance results not only reveal a classic tectonic sedimentation history but also match the corresponding results measured at the locations of two wells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.