Abstract
For a graph [Formula: see text], a double Roman dominating function is a function [Formula: see text] having the property that if [Formula: see text], then vertex [Formula: see text] must have at least two neighbors assigned [Formula: see text] under [Formula: see text] or one neighbor with [Formula: see text], and if [Formula: see text], then vertex [Formula: see text] must have at least one neighbor with [Formula: see text]. The weight of a double Roman dominating function [Formula: see text] is the value [Formula: see text]. The double Roman domination number of a graph [Formula: see text], denoted by [Formula: see text], equals the minimum weight of a double Roman dominating function on [Formula: see text]. The double Roman domination subdivision number [Formula: see text] of a graph [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the double Roman domination number. In this paper, we first show that the decision problem associated with sd[Formula: see text] is NP-hard and then establish upper bounds on the double Roman domination subdivision number for arbitrary graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.