Abstract
Summary We propose a semi-parametric test to evaluate (a) whether different instruments induce subpopulations of compliers with the same observable characteristics, on average; and (b) whether compliers have observable characteristics that are the same as the full population, treated subpopulation, or untreated subpopulation, on average. The test is a flexible robustness check for the external validity of instruments. To justify the test, we characterise the doubly robust moment for Abadie’s class of complier parameters, and we analyse a machine learning update to weighting that we call the automatic $\kappa$ weight. We use the test to reinterpret Angrist and Evans' different local average treatment effect estimates obtained using different instrumental variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.