Abstract

This paper presents the study and experimental validation of a 9 kW lead-acid battery charger used to feed the 72V DC-Bus inside an hybrid electric locomotive demonstrator realized in the frame of the French research project PLATHEE (energy-efficient and environmentally friendly train platform). The proposed topology for the battery charger is a DC/AC/DC step-down converter structure using high frequency transformer and a double resonant series-parallel dipole. Main advantages of this topology are losses minimization due to soft switching operation, reduction of passive component weight and easy system integration. However, development and testing of the converter remain complex owing to high frequency constraints. Anti-parallel diodes of the DC/AC half-bridge dissipate losses in excess during switching sequences and their reverse recovery energy leads to constraining high current peaks. A solution consists in using fast Insulated Gate Bipolar Transistor (IGBT)/diode technology well suited to high frequency switching, and able to limit diode peak-current amplitude during switch-off. Electro-thermal endurance tests have been performed in order to characterize the thermal behavior of the semiconductor module and control its case temperature raise. The battery charger working has been first validated on laboratory test-bench using a battery emulator, and then implemented in the hybrid electric locomotive platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.