Abstract

In this paper, fourth-order compact difference schemes are derived, analyzed and tested at length for both one- and two-dimensional Rosenau equations under the spatial periodic boundary conditions on the basis of the double reduction order method and bilinear compact operator. We prove that these schemes satisfy mass and energy conservation law via the help of the energy method. In addition, the uniquely solvable, unconditional convergence and stability are all obtained with the convergence order four in space and order two in time under the L∞-norm. Several numerical examples are presented to support the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.