Abstract

Results of experimental investigations of 304 austenitic stainless steel (ASS) ultraviolet spectral range by single and double pulse laser induced breakdown spectroscopy (LIBS) at atmospheric pressure are reported. Various parameters, such as laser energy, placement of the laser beam focus with respect to the surface of illumi-nation, and collinear double laser pulse delay were used as variables. This study contributes to a better under-standing of the LIBS plasma dynamics by observing the temporal evolution of various emission lines. Temperature measurements were made by the Boltzmann diagram method using singly ionized Fe lines, and electron densities were found from Stark broadening. The temporal behaviors of these parameters were also estimated. It was found that the electron temperature for double pulses is higher than that for single pulse of the same total energy. For double pulse LIBS, the iron line emission intensities are enhanced and the analytical performance is improved. For instance, the intensity of iron line Fe I 275.01 nm was a factor of about 300 times higher if a double pulse of 2 × 20 mJ was used instead of a single pulse of 40 mJ when focusing the beam 4.7 mm behind the target surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call