Abstract

We studied the photoelectron spectra of He atoms resulting from double photoexcitation to autoionizing states by an attosecond xuv pulse in the presence of intense few-cycle Ti:sapphire lasers using the time-dependent hyperspherical close-coupling method. In its first application we show that the combination of a weak xuv pulse and an intense infrared laser offers an efficient means for probing states that cannot be reached by single photoabsorption experiments alone. The method provides an alternative approach of studying Stark induced states at field strength much higher than that available for a dc electric field. Using parameters from the presently available attosecond pulses and infrared lasers we showed that the four singlet 2l2l{sup '} doubly excited states of He are prominently excited in such experiments. The dependence of the shape of the autoionizing states thus generated has been studied with respect to the intensity and the carrier-envelope phase of the few-cycle laser pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.