Abstract
We consider a Dirichlet problem having a double phase differential operator with unbalanced growth and reaction involving the combined effects of a concave (sublinear) and of a convex (superlinear) terms. We allow the coefficient \(\mathcal E\in L^\infty(\Omega)\) of the concave term to be sign changing. We show that when \(\|\mathcal E\|_\infty \) is small the problem has at least two bounded positive solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.