Abstract

AbstractElectrocatalytic water splitting is deliberated as an assuring track to use renewable energy for the production of hydrogen; yet, its industrial application is limited by the anodic oxygen evolution reaction (OER). Perovskite oxide‐based materials have been comprehensively explored as assuring catalysts for OER in alkaline media, with (electro)chemically persuaded alteration of their initially crystalline surface into an amorphous state. This perspective highlights the features of double perovskite electrocatalyst for the oxygen evolution reaction in particular, oxygen‐deficient double‐perovskite with multiple cationic redox sites. The rational reordering of A‐ and B‐sites, along with oxygen vacancy, lead to the generation of an array of novel double perovskite catalysts. A new signifier in stability level is also projected to highlight the relationship between performance and surface stability of OER with perovskite catalyst. This descriptor will offer potential strategies to optimize OER catalytic performance by tuning the surface structure of double‐perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.